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Foreword

Status at the End of the Century,” a workshop
held at NASA Dryden Flight Research Center on 6-8 April 1999, may well be the last
large international workshop of the twentieth century on pilot-induced oscillation (P10).
With nearly a hundred attendees from ten countries and thirty presentations (plus two that
were not presented but are included in the proceedings) the workshop did indeed

represent the status of P1O at the end of the century.

These presentations address the most current information available, addressing regulatory
issues, flight test, safety, modeling, prediction, simulation, mitigation or prevention, and
areas that require further research. All presentations were approved for publication as

unclassified documents with no limits on their distribution.

This proceedings include the viewgraphs (some with authors’ notes) used for the thirty
presentations that were actually given as well as two presentations that were not given
because of time limitations. Four technical papers on this subject that offer this
information in a more complete form are also included. In addition, copies of the related
announcements and the program are incorporated, to better place the workshop in the
context in which it was presented.

Mary F. Shafer
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STING FOR APC : CURRENT PRACTICE AT AIRBUS

FUGHT TESTING FOR APC : CURRENT PRAI

The pilot must maintain a constant -
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aligned on the runway centsiline
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FLIGHT TESTING FOR APC
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The Prediction and Suppression of PIO

Susceptibility of Large Transport Aircraft
- An Evaluation of Proposed Methods -
Rogier van der Weerd

Delft University of Technology / Aerospace Engineering
Department of Control and Simulation

6 April 1999
Prepared and presented by
Rogier van der Weerd, M.Sc.
r .vanderweerd@lr.tudelft.nl
Research Associlate L tel. +31 (0)15 278 9108
Flight Control and Simulation fax. +31 (0)15 278 6480

This presentation is based on the results of a study more thoroughly reported in:

Weerd, van der R.; ‘PIO Suppression Methods and Their Effects on Large
Transport Aircraft Handling Qualities’; Thesis (M.Sc.), Delft University of
Technology, Delft (The Netherlands), January 1999

The study was carried out under a cooperative agreement between Delft
University of Technology in the Netherlands and The Boeing Company at Long
Beach. A student placement was made possible at the Stability, Control and
Flying Qualities group of Boeing Phantom Works.

The project was carried out under supervision of:

The Boeing Company Delft University of Technology
John Hodgkinson Prof.dr.ir. J.A. (Bob) Mulder
Dr. Edmund J. Field ir. Samir Bennani

Walter von Klein Jr.
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Contents

Introduction
Prediction of PIO

_ Available Criteria
— Case Study Using Example Aircraft

Suppression of PIO
— Available Methods
— Case Study Using Example Aircraft

Conclusions and Recommendations

The study into PIO had two main objectives:

1. Investigéte available methods for PIO prediction, including those
recently proposed

2. Investigate possible remedies to P1IO

Some of the group’s expertise and experience with PIO could be used
to evaluate and validate different criteria and methods using an
example large transport aircraft with different configurations that have
handling qualities that are considered well understood / investigated.
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= Prediction of PIO

Limitations of Linear Methods (Category 1)

Most observed PIOs involved rate saturation of control
surface actuator(s)

« Rate Saturation Result of PIO (poor Cat | properties)

« Or, Rate Saturation Actual Cause of PIO ?

Cat Il Evaluation requires the inclusion of nonlinear behavior

This can be done in

« Time Domain

_ Time Domain Neal-Smith  — Hess Method for Nonlinear Dynamics
« Frequency Domain Using Describing Function Technique

— DLR's Open Loop Onset Point (OLOP)
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wmws  Prediction of PIO
Category | Example - Bandwidth

3]
- Bode Plot of — (jw)
r e Pilot Biticn Augmented o ‘SsucU:)
—_— (Crossover s Y f » et
Model) Ircra i

. e Y

Two |onnaht Parameters
» Bandwidth Frequency, ®gy

(“Speed"” of System)
 Phase Roll-Off, 1,
(“Predictability”)

R s
H Aolkol
i

[T [t Y
Fogd e YO

T £

The Bandwidth criterion has been shown to be a well performing criterion on
a wide variety of cases.

Extending Bandwidth to systems with nonlinear elements is possible (in fact,
the method of performing a frequency sweep in order to estimate the system
frequency response includes all kinds of nonlinear elements of the real
system). Rate limiting elements in the command path of the EFCS can be
identified easily for a given input amplitude. However, if the rate limiting
element is part of a feedback loop, the identification of the describing
function may fail, as typical nonlinear system behavior gets into play, e.g. the
introduction of multiple equilibria (limit cycles, jump resonance).

REF

Hoh et al 1982.
Mitchell et al 1994
Mitchell et al 1998
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Nonlinear Systems (i)

L
3

Limit Cycles - sustained nonlinear oscillations, fixed
amplitude, fixed frequency

Nichola Plot

GoeraCraim], Prym2SAL 710 48]
Conditions for a Limit Cycle are sought :
Use neutral stability condition (Popov): %w
C(jw)- N(jo,0)-P(jo) = ~1
= C(](D)P()(l)) =-— -' yrra— .
N(]m’ u) K - -180 h'.lTM‘ -120 100 -20

N(jw,0) is the sinusoidal describing function represenation
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Nonlinear Systems (ii)

Jump Resonance

No unique relation anymore between

frequency and gain/phase of closed- Nichols Pt
loop response " >
0 e CipopPlien)

Phase Jump in Pilot-Vehicle System ol ek

g ;
~ i /
Misadaptation by Pilot SC IR
0 -
PIO Eso 6 % 100

Phase [deg]
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wmme  Prediction of PIO
Category Il Example - OLOP

r e ] Flight
— Pilot Control

Bare »

(Pure Gain) \_. System

Rate Limit

Airframe _\

Rate limiting causes Jump Resonance
OLOP determines “the consequence”.

OLOPis L(®) = ¥ (Gonse)
At the onset frequency

.. Categoryfl

3 e g g T g

PI0{Susceptible

REF
Duda 1997
Duda et al 1997
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mes Case Study Configurations .
Of The Example Aircraft

» Receiver Aerial Refueling Task
— Clean Configuration
— High Speed, M=0.613
— High Altitude, h = 20,000 ft
« Pitch Rate Command System Configurations:
— Old Software Version F — PIO PRONE
- Updated Software Version H — PIC FREE
Added Phase Lags 1,=[0.1,0.25]
« Simplifications
— Single Axis
— No Model Uncertainties
— No Structural Dynamics

The Example Aircraft

High Performance Fly-By-Wire Military Cargo Airplane.

High-wing, four engines, T-tail configuration. Length 175 ft, height 55 ft,
wingspan 170 ft, MTOW 600,000 Ibs

‘High gain’ mission tasks include: Landing/Takeoff Short Austere Airfields and
Aerial Receiver Refueling. PIOs were encountered during developmental flight
testing for both tasks [1].[2]

Configurations

Apart from configurations representing old and updated Electronic Flight Control
System (EFCS) software versions, additional configurations were evaluated that
represent the updated EFCS software with intentionally deteriorated
characteristics.

The latter is accomplished by adding phase lags in the flight control system by
increasing the time constant of a first order filter residing in the command path of
the control laws.

REF

Tloputaife et al 1996
Iloputaife 1997
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wmii Pitch Axis PIO Event g
EFCS Software Version F

Pilot initiated emergency
breakaway from tanker

Typical category Il P1O: R AR SR
. . . 7 R A K
o “High pilot gain” S R
« “Pilot is 180° out of phase” O Normal et ] Ty et
with pitch attitude SRR SR S
» Software rate limiting of < N E—
[ — t. S LA S
elevator command signal - e
L Elevator Deflection [deg]
o e e
i ) :_"(' iir:p‘é’d”fkmslr ’ T
[ Ref. lioputaife 1997, lloputaife et al 1996} s o = 3

REF
Iloputaife et al 1996
Tloputaife 1997
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mes Example Aircraft
Control Law Changes

)

L]
+

: R
g
4

Pilot Avtificial
Gain Feel System

Alrframe :;

+
inner Loop Sensors
Rate Limiter

Rate Limiler

Pitch SCAS

Main differences between old and new software

1. Structural filtering optimization — increase system bandwidth
2. Stick shaping change — reduce control sensitivity

3. Change rate limits — fully use actuator capability

[ Ref.lloputaife 1997 lloputaife et al 1996 ]

REF
Tloputaife et al 1996
Iloputaife 1997
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s Bandwidth Criterion "
Validation Using Example Aircraft

o [faf = e
v [ ) 3 .
& o 3 A Pio B:2" Approach Flight Test
- -~ ~5
. A 82" Aerial
fz & | NePiO Refueling Flight Test
= v PIO Susceptible v PIO
Coe 8 huttle = Flight Test
[ VA
3 No PIO
‘; PIO Suf cept le if Flight Path Bandwidth Insufficient
g ot » .
(o] Ne PIO %15 Flight Test
o [m]
PO 1 o
e Overshopt
No PIO a PiO
Excessiye xa Al Flight Test
< L. s o [m} No PIO
4 } 4 ]

Pitch Amlude Bandwidth ug,, [rad/s} * Source: Kiyde, D.H. 81 al 1995

ry

)

Criterion mapping is not considered to

Fight Faih Angle Bandwidih, w_BW_gamm [rad/'s]
o
= -

be successful discrimination since flight .
path bandwidth is sufficient for both e
configurations v P
A FCARLBI:
02 [ Lovel 3 V| FARLOT

o 05 1 15 2 25 3 3s +
Pitch Allitude Bandwidth, w_BW_thela [rad's]
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OLOQOP Criterion

SENLEI
Application to Example Aircraft
/ Pljw) | ©
1 *_ [, o Pt »E: : "

Pilot

<
Fijn) [4
<

Pitch SCAS

1. Assume pure gain pilot that exerls sinusoidal stick signal with certain amplitude |r|
2 Determine the onset frequencies of all rate limiting elements using

ﬁz«mi,.)lm—k- . .

- This equation can be solved
2 jerc2cimag) . raphicall

At alw_,giﬂ%ﬁ:_l, graphically

3. Al the critical rate limiter, cut loop, plot loop transter function on Nichols Chart
4. OLOP is point on 10CUS fOr = toneq. Its position can be related to Category Il PIO

susceplibility
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wmow QL OP Criterion
EFCS Software Version F (old)

Onset Frequencies

Inner-Loop Woneer=2-05 rad’s
Outer-Loop Wgneer=3-53 rad/s
=

P

0
Fraqueecy frads)
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wmam  OLOP Criterion "
Validation Using Example Aircraft
Fichicls Dagram
18 AR S Tm o La- T
l' ":
'R N Fi=-v . oo
y L e A PIO .
= b Category Il - > Sasb " In-Flight Sim Experiment
'z’ P;) Susceptibl - 4 | NoPiO
3 : o -
¥ : v PIO
- i Space Shuttls ™ Flight Test
] . v | Norpio
3 L
P [ ] PIO
E-i8° Flight Test
o] No PIO
21 T A o [ ] PIO
. Example Alreralt  Fight Test
sepeee e T L a No PIO
‘!illi AW !I:I 1411 _s KTz 1]

I CLE L Chot YT M e ind

* Source: Duda, H 1987
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it Results Comprehensive
Criteria Validation

Results Category | Critenia

Note: EFCS version F showed PIO tendencies

EFCS version H is the updated, PIO-free configuration

LOES Bandwidth Gibson  Smith- Hess Neal-Smith
CAP T, Geddes
FC.EFCS({F) -f- -l Li/no -Ino -Ino Li/no -J-
FC.EFCS(H) Li/- L2/- L1i/no -Ino -Ino Li/no Li/-
Results Category |l Criteria
Hess OLOP Time domain LEGEND
Nonlinear Neal-Smith Liees Predicted CHR
- ’ yes .no Predicted PIO
FC.EFCS(F} yes yes yes suscs'pﬁbility
FC.EFCS(H) no no no Griterion doesn't

include prediction
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s, Remedy to PIO

“Conventional” Methods
» Change Hardware
— Actuators Tail Size
— Feel System Characteristics - elc.
+ Change Control Laws
— Control Allocation / Architecture System Bandwidth’
~ Control Sensitivity’ Loop Gains’
— Reduce Phase Lags / Filtering’ - elc.

“Alternative” Methods

e PIO Suppression Filter
_ Aftenuate Pilot Command At Predefined Pilot Operating Conditions

. Software Rate Limiters With Phase Compensation
— Reduce Phase Loss Under Rate Saturation

* These methods were applied during the development of the example aircratt o fix the problems

On most cases of PIO experienced in the past, the problems were discovered in
a relatively late phase of development, or even, during routine operation. A
solution that allows the established control law structure to remain the same
while eliminating PIO susceptibility surely is preferable.

Goal: Look for methods that solve the PIO problem without having to redesign
control laws.
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e P10 Suppression Filter v
Initial Design
AMPLITUDE ESTIMATION
'-----------------------—_—-----—-----------------: Lower Limit
. ez f—
N P P L et L L L et ikttt A
) : wA
' @A
> 1:‘,% x ' A
--__--__.__----_--_-----------__--__---_-___-___.! o
CONTROL ACTIVITY ESTIMATIO L
K Gain Schedule
A
w
3 Y
U
e [ Y= (UK +>
Stick p - ) Flight Control System
Position Stick Shaping Function Input
REF

Powers 1981
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s PIO Suppression Filter

Functionality

Stick shaping function usually is a

31 order polynomial:

Suppression is obtained through:
Y = u (K + ky-[u]- K+ Ky -u?)

In which K is The suppression gain

“Stick desensitizing”

Ty T I it R

I PR

i .
LA N L LIRS A

¥ %L
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PSD(PSTICK) [in*2]

ST & . .
wmis  PIO Suppression Filter .
Response to Example Case
? " H ( o ;A i ‘ iq ,ﬁ“ ;‘f‘-l pult
z 1 ﬁl: < P i PR \ I .
; l”&W\W&‘M?M-Q ;gihg W ! ’\; i -r-‘J v { Y
: : AL S I U pusn
S I S T e EEECE
3%+ -y Y
?, e e e e o o e o o }l, . ";: B / ",:J!‘ji _‘L'::"l‘:.»;’_.\.. .
T T T T s S e e 3
g P G P A A " k - I Suppression Activation
! ’,“ > [} . Ay T . 1) t
I ! | O
; | = ]
2 i X L.;r. — 4
i Al; 'l., ;is K7 R H ?-:'s: X peaerd ;n i
T el e~}
[ Source lloputaife 1997]
PSD of Stick Deflection Signal
5 20
ne s Sampling Rate
3 < f=10Hz
Q10
=
2 ¢ No. of Samples
: B S N=2,300
0 0 ' Frequency Resolution
o 1 2 3 4 b 1+ 2 3 4
Frequency [rad/s] Frequency [rad/s] Aw=0.14 rad/s
Excluding PIO Frame Including PIO Frame
Conclusion:

During ‘normal’ task execution, pilot inputs contain energy in the frequency region of the

actual PIO (which is about 2.3 rad/s)

REF
Iloputaife 1997
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WMl phase Compensated Rate Limiting Schemes *

(Rundgwist - Saab Military Aircraft)

Concept:
» Under rate saturation, excess
in demand is fed back

« Rate limiter command signal
is attenuated

» Result: Output will change

direction when input does Rate LimitR

Daacan Fomctmsa of S um Ly Sarmey

REF.
Hanke 1995
Rundqwist et al 1997

208



wnws  Phase Compensated Rate Limiting Schemes

Effect on Closed-Loop System Using OLOP

hobE Chad

b, yPp——— A . ey ey
. . . o oot -t .&“ﬂ“ . L B :
Stability Margin Analysis : | © Linear Loop Transmission
wloL
Conventional rate limiting: wh
Phase Jump, undesirable
’ £
Alternative rate limiting L
: 2 Conventional
Avoids Phase Jump Forate umﬁ - .
* J &N ‘f')z{ Phase Compensated
Retain stability with same rate an ’g e Tea X Rate Limiter -
limit imposed on system K Ko e T
A _-,—;.._.__;. SRS S T e B AT
S F L L SR T 2 R b ¥ R (D I GO &
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(g Conclusions

« Category Il PIO criteria were successfully validated against a
limited selection of example aircraft configurations

» When designed properly, a PIO suppression filter can identify
a developing PIO And take avoidance action.

« Phase compensated rate limiters can alleviate the severe
penalty associated with rate saturation in a closed-loop
system.
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p=_ Further Work

23

o Perform similar analysis for other PIO data

. Combare results of this study with recent experimental flight
test data

« Address effect of structural dynamics on handling qualities
and PIO

« Incorporate modern tools for stability analysis (mu, LMIs)
Goal: towards category Iii PIO prediction
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Flight Testing for P1IO

Ralph H. Smith

High Plains Engineering
PO Box N
Mojave CA 93502
661-824-1023

www.piofree.com
rsmith @ piofree.com

Introduction

Theory reduced to practice
Developed intermittently over 32 years
Highly nonlinear process

Theory applied to numerous aircraft cases at
EAFB since 1975

— Several PIO predictions prior to flight test

— Two non-PIO predictions

Incorporated into TPS curriculum since 95B
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Priorities

« Solve the airworthiness problem
_ Eliminate safety-of-flight issues related to P1IO
« PIO sensitivity trainingr
« Proficiency training
« Let the subsystems people deal with Cooper-
Harper ratings and psycho-babble
_ Performance definitions are negotiated items
— Workload is indefinable

A Question:

« No self-respecting engineer would design a
servomechanism using criteria that are
routinely accepted for piloted control of
airplanes.

« Why should a FCS be designed to less
stringent criteria than a floppy disk drve
servo?
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The Process

o Predict/Test/Verify
— Characterize the Expectation
— Exercise Experimental Technique
— Understand the Results

Predict

» Theory or Criteria
— Smith-Geddes (implemented in the RSMITH
software)

e Simulation

— Simulate what?
« HQDT
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Aside: Definition

« PIO is pilot-in-the-loop oscillation
« PIO generally refers to pilot-in-the-loop
instability

Aside: Characterizing PIO

 PIO due to excessive phase lag in the
airplane

« PIO due to excessive command gain (stick
sensitivity)

(T—‘ Pilot Stick Airplane >
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Aside: Phase-Gain Interaction

« The RSMITH software was written to
account for the interactions
— Predicts CHR for worst-case tracking
_ Predicts max stick sensitivity to avoid PIO

Aside: Stick Sensitivity

» The dominant HQ parameter
_ Overrides phase-based criteria (including
Smith-Geddes)
« Typical airplane:
— Stick sensitivity for no-PIO = insufficient
authority to maneuver
— PIO susceptible
_ Non-FBW transports are possible exceptions
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Testing for PIO

« No Phase 3 (Cooper-Harper) testing

« HQDT -- the only maneuver that works
— A sufficient criterion for PIO

— Go/No Go engineering criterion
+ Closed loop task
« Divergence = PIO susceptibility
« Convergence = Not PIO susceptible
» Task is not a factor
« No Cooper-Harper ratings, no performance standard

Aside: HQDT

» Unnatural act
+ The old guys hate it
» The new guys have trouble with it

+ Has a theoretical basis: sufficient condition
for P1IO

« T-38 experience: proof that susceptibility
does not equal unsuitability
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Understanding the Results

Priority: Verify that you tested what you
thought you tested

Identification of aero parameters
Model the FCS + airframe

Freq response analysis of flight data to
confirm model validity

Write a tech report based on fact, not
expectation

Case History

Approach & landing task

Control laws designed to satisfy Smith-
Geddes criteria using RSMITH program

Predicted Level 1 =
Flight test: Level 2/3
Initial reaction: failure of criteria

Fact: Invalid aero model and VSA mech;
criteria worked
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Approach & Landing: PIOR =4 (R1280_14)
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Slope Parameter & Criterion Phase Angle
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Case History: HQDT

« HUD tracking task, simulated air-to-air
» PIOR=5

« Phase 3 tracking: CHR = 8/7/6/5/7

« Phase 3 tracking: PIOR = 5/5/3/3/3

Divergent PIO in HQDT Maneuver (F444_08)
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Veridian Engineering Flight Research Group

Use of In-Flight Simulators
for PIO Susceptibility Testing and for
Flight Test Training

By
Michael Parrag
Veridian Engineering (Calspan)
P10 Workshop
Dryden FRC, Edwards, CA
April 1999

The common denominator for both developmental testing and

flight test training
Realistic task in a realistic environment with uncompromised
visual and motion cues

\J 8 il

Veridian Engineering

Flight Research Group

2 PI0 WomshopM L Peregid 1198
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Before talking about the in-flight simulator “tool” in the PIO context let
me say a few words about PIO phenomenon from a piloting viewpoint
- having endured many as an evaluation pilot on research programs

and having witnessed hundreds as a not so casual observer or safety

pilot in a number of our in-fight simulators

\L L Ao\

Fligit Reseach Group Veridian Enginesring

2 PO WoshopML_Par agii 1999

I would like to briefly review several aspects of the PIO phenomenon:

= The variety of pilot input —> aircraft response features that cause
unpredictability, a root causal factor in PiO’s

« The pilot's way to characterize a P1O in terms of how it affects this
piloting task

« The circumstances that may trigger P10 events.

= Using the understanding of the above factors to structure flight test
methodology oriented at uncovering PIO susceptibility

« Finally, this will lead to how the in-flight simulator is a safe and cost
effective tool to accomplish flight test objectives

\J 3 A

Veridian Engineering

Flight Research Group
P10 WodkshopM L "-l“"
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Response Unpredictability

Primary causal factor for P10

J

Response Unpredictability

Predominantly a situation where initial response to pilot input
miscues pilot as to where response will end up

or
pilot simply does not get expected response for a given input

\J R Ao\

Flight Research Group Veridian Engineering
PYO Workishop™ L Pan apd. 1999

Potential Sources of Unpredictability

: Very initial response

- time delay

- onset rate /

> too low

too high

» Mismatch between time to first perceptible
response and response buildup

. Steady state sensitivity

\/3 AW\

Flight Research Group Veridian Engineering

PO WorkshopiM L Pamigid 1890
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Potential Sources of Unpredictability (Cont.)

= Poor correlation between pilot sensed responses

e.g. pitch rotation vs ‘g’ buildup (in up and away flight)
or

pitch attitude and flight path angle (in P.A)

« Dominant cue creating unintended loop closures (synchronous
behavior)

e.g. effects of Nz, and Ny,

\/ 8 A

Veridian Engineering

Flight Reseach Group
Y0 Workshop M . PeagAl 1989

Potential Sources of Unpredictability (Cont.)
ﬁ
» Non linear effects

large and sharp (sudden) changes in characteristics such as
in command gain scheduling

or

in response characteristics

Mechanical Non-Linearities
- rate limiting in surface actuators or in software along command path

= Control misuse with exotic FCS modes
or
when intuitive pilot behavior can get you in trouble
« Excursion into non-linear aerodynamics

- hi alt/hi Mach - pilot vehicle motions venture into Mach buffet or stall buffet
A8+ \®

Veridian Enginsering

Flight Research Group

[y PO WoAsopI L Peagd ey
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Potential Sources of Unpredictability (Cont.)

= A major design culprit

U

» Overaugmentation

« excessive FCS gains in name of “robustness” or
“agility”

\J RS A%\

Flight Reseach Graup Veridian Engineering
IO Workdhop WL Pae sg4/ 1989

Potential Sources of Unpredictability (Cont.)

= Some outcomes:
- overly abrupt dynamics in pitch/roll

causes staircase inputiresponse in gross acquisition and causes hi freq/low
amplitude P10 in fine tracking (bobbles)

_requires use of more sensor filtering —— time delay

- drives rigid body dynamics closer to aeroelastic modes structuring
filtering ——> time delay

~hi fb + hi command gains ——> rate saturation more likely
- often worse in turbulence

~ unnecessary wear/fatigue on actuators, surfaces and associated
structures
\LT il

Flight Research Group Veridian Enginsering

PO Workshop L. Paragdt 1V
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Potential Sources of Unpredictability (Cont.)

= Another major design culprit —> FCS complexity

— designer cannot anticipate all possible interaction
between FCS and pilot

. cannot guarantee “PI1O free”

\L o AW\

Flight Resewch Gioup Veridian Enginsering

] PAO Workshop/M L Paragd 1289

Types of PIO
Pilot’s Interpretation

based on how PIO
interacts with task

TR i

Veridian Engineering

Flight Research Group

2 B0 Wirhop W L Pamapd BT
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Types of PIO
(Pilot’s Interpretation)

» PIO’s have two distinguishing features namely, frequency and
amplitude, that determine how the pilot can deal with P1O in context of
a task

Examples

» Hi freq, low amplitude such as in roll with very short 15

U

roll ratcheting
— excessive p causes significant n_ which cause rapid reversals by pilot -
settles into “dominant cue/synchro"nous behavior”
— viewed by pilot as very annoying but task remains controllable; pilot can
easily judge average of PiO's

\J R A%\

Flight Research Graup Veridian Enginesring
PIO WeAshap W, Paragt 1959

Types of PIO
(Pilot’s Interpretation) (Cont.)

. Low freq., larger amplitude — often seen with rate limiting

- pilot is unable to judge average of oscillations

generally not controllable if task constraints do not permit pilot to back out

» Medium frequency —> gray area; degrée of problem caused in task
depends on:

- amplitude of PIO
how much he is “driven” by a dominant cue
whether pilot can manipulate “average” to continue task
- personal piloting technique - can pilot tone down his inputs?

3 AT

Flight Ressarch Group Veridian Engineering

IO Workshon L Pareg 41000
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Circumstances which
may “trigger” PIOs

\J 44 il

Flight Research Group Veridian Engineering
[ A0 Worl ML Pae 2gd 1059

Circumstances which may “trigger” PIO’s
#
. Found accidentally in an aggressive or high precision task scenario

when undesireable aspects of the Pilot-Vehicle System and/or
environment come in coincidence or change unexpectedly

- major objective during development should be to minimize risk of this

« Uncovered during flight test by a determined and disciplined process of
exploration and discovery

utilizing high gain tasks under demanding environmental conditions

- process intended specifically to prevent *accidental” discovery of PIO where
consequences are generally more serious

« In both cases, pilot demands rapid response and precise performance

\J 1 A=

Flight Resaarch Group Veridian Engineering
» P Wokanop L Barmmgidd V906
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Circumstances which may “trigger” PIO’s

» In the course of a high gain task scenario, when one or more
undesirable elements influencing the Pilot-Vehicle System closed loop
performance surface unexpectediy

—1In general, when sudden or anomalous changes occur in pilot behavior,
effective vehicle dynamics or in feedback to the pilot

—- Atmospheric upsets such as:

turbulence
cross wind
wake turbulence
wind shear

\L D A\

Flight Research Group Veridian Enginesring
PYO WokshopM(_Pan sgit 1389

Circumstances which may “trigger” PIO’s
(Cont.)

. FCS mode change during a high gain task

esp. with significant chéhég fn [A/C + FCS] dynamics, trim change
or FCS dead time
«Mode change with gear/flaps or air/ground switch or
unexpected FCS mode due to erroneous input from aircraft

Sensors
e.g. FCS gains for wrong flap deflection

« Mixed manual and auto FCS modes when intuitive
behavior mixes with auto control law to give unpredictable
response

e.g. auto compensation for engine out - - - creating control problem

when pilot does get in loop
\J4 AW\

Flight Research Group Veridian Engineering

PO Workshop L Paragid 1798
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Circumstances which may “trigger” P1O’s
Cont.)

= In course of low gain monitoring tasks (pilot out of
loop), sudden change:

—Surprise (shock) - startle effect

“hours of boredom punctuated by seconds of sheer panic”
sudden entry into control loop due to upset or change in
pilot's perception —> often results in much bigger

correction than needed

e.g. akin to sudden awareness after dozing off at the
wheel of a car

—unexpected actuation of some a/c configuration device such as auto
speed brakes, LE. slats

—system failure —>e.g. runaway tim, sensor or display failure

\Lh !

Veridian Engineering

Flight Resemch Group
10 Be0) WorkahopMl Pan wpa 1355

Circumstances which may “trigger” PIO’s
(Cont.)

E
- Upset after “hidden onset” e.g. autopilot becomes saturated by turbulence
upset, hinge moments due to ice - - - then “lets go™;

pilot is faced with out of trim upset

. above scenario but under conditions where handling qualities are marginal +
close to aircraft limits : :

lack of “situational awareness” leading to inappropriate interaction between
pilot and automatic systems

“pilot and copilot fighting each other” - - - on the controls

LT i

Flight Research Group Veridian Engineering

PHO Workshop At L Pamagid 1999
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Circumstances which may “trigger” PIO’s
(Cont.)

In Summary

triggerevent ) +

PIO is outcome of the latter only or both

unpredictable
response

\J 4/ AR\

Flight Research Group Veridian Engineering
PO WorkthopM L Par agit. 1949

The Determined “PlO Search” Flight Test
' Process

- Objective is to minimize risk of PIO
occurrence in operational use

- Need to find the “black holes” in flight test -
military testing - civil certification

\J 1 A

Fhight Research Group Veridian Engineering
PIO Woshop | Parrag é/19/99
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_ To ensure coverage of vast set of
circumstances in which PIO’s can occur

Need to test in combination:
» All potential [aircraft + FCS] modes/configurations

~low probability of occurrence is not excuse not to test

» Relatively extreme environment conditions - progressively but
sufficiently early
= Aggressive yet high precision tasks

« Clever introduction of “trigger events” described previously - to
reproduce surprise and stress to force “unusual control inputs”

This is difficuit to implement!
\1 R4 A\

Flight Research Group Veridian Engineering

2 PO WorkshopML Par sgh 1984

Elements of rigorous/determined PIO search
process

;

= High gain tasks

need to work high frequency portion of PVS to experience
phase lags associated with many initial response problems

t = 0" = high freq
= Unfavorabie atmospheric conditions
» Secondary task loading

= Piloting technique
= Urgency of control action

- maybe combined with triggers?
= State of pilot's situational awareness

\/ 3 i

Veridian Enginsering

Fhight Ressarch Group
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238



Must pay careful attention to these process elements because dealing with
flying quality CLIFF

handling ! @
quality ,

A

goodness ,

P10
_— SPACE

pilot closed loop gain
GOING OVER IS SENSITIVE TO PROCESS ELEMENTS
\LE AR

Fiight Research Group Veridian Enginearing
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RO Workshon™ L Per sl 198¢

- PA—> Approach
VS
Flare and Touchdown
Lake Bed vs Runway!
vs Carrier

= UP AND AWAY —> Formation
VS
AJA Tracking

VS
AJA Refueling
Need Tight (Demanding) Task for Proper Discrimination!

\J ¥ A

Flight Ressarch Group Veridian Enginesring

PG WostopM L Pamagid 390
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Closed-Loop Standards of Performance

s Well Defined Predetermined Standards for

Desired Performance
Adequate Performance

e.g. in terms of mil errors for tracking or
touchdown box on runway

= Ensure that pilots are proficient in mechanics of task

VLT iy

Veridian Enginsering

FHght Research Group
PO Workshoo L Per agui 1999

Environmental Factors
F

« Turbulence including gust upsets
« Cross-winds

= Day-Night; - VFR - IFR
i.e. Visual Cues

« Secondary Task Load

\LT i

Flight Ressarch Group Veridian Engineering
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Pilot Closed-Loop Gain

= Aggressiveness in Task

- Operationally Realistic
—Pilot Chooses ! can back out!

= “Pucker Factor” - - - Forced On Pilot by Environment/task
constraints . .

—PIO’s ARE NOT Optional

\J 3 AW

Flight Reseach Graup Veridian Engineering
15 PHO Workshop ML _Par gk 1909

Representative Piloting Technique

- Aircraft needs to be P10 safe for entire piloting population

= Piloting population is not uniform

There are low gain predictive typés
There are high gain “ham ﬁst_ed” types

« Both types need to be covered in PIO search, but especially latter

= Should also include:

Pilot unfamiliar with particular aircraft being tested, unbiased first opinions can
be very telling

Test pilots who have experienced PIOs in past and who can effectively
communicate their evaluations
\T&S i\l

Flight Research Group Veridian Engineering
1" IO Woashopd L Panagit 1990
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Urgency of Control Action

» Need to brief pilots:

—1to initiate aggressive gross acquisition
— about compelling and immediacy to recovery from upset

—“time to acquire” is the critical element

\L T A\

Flighl Research Group Veridian Engineering
& PIO Work ot L Paragit " 3%9

State of Pilot’s Situational Awareness

Situational Awareness (S.A.) ——> Pilot being fully cognizant of current
aircraft state (configuration, FCS mode, autopilot mode etc.), of
appropriate control strategy, or of his environment (weather, other

aircraft)

Lack thereof or sudden change in S.A. may generate trigger or
otherwise cause an “inappropriate” control input

may be related to workload, understanding of FCS modes, piloting
technique etc.

_consideration of the above possibilities needs to somehow be worked into
the test plan

e.g. doing "blind” tests when safely feasible |

\T AS

Veridian Engineering

Flight Research Group
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Tools of Pilot-in-the-loop
Tests

\J Ao

Flight Reseach Graup Veridian Engineering
PIO Workshop™ L Par agi/ 1988

With Current New Technology - - FBW Aircraft

- Reliance on predictive analytic metrics

Inadequate for handling qualities

- Pilot-in-the-loop evaluations essential

\J 3 A

Flight Research Group Veridian Englneering
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Pilot-in-the-Loop Evaluations

» Only means of integrating ali dynamic elements in closed loop

Pilot

Controliers/Feel System
A/IC + FCS

Displays

Weapon Systems

In context of mission-oriented tasks

= Only credible means of assessing handling quality goodness and
minimizing risks of hidden “cliffs”
\LL A

Flight Reseach Group Veridian Engineering
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Tools of Pilot-in-the-Loop Evaluations
F

« Ground-Based Simulators
= In-Flight Simulators
= Prototypes

= Operational Vehicles

\/8/ i

Flight Research Group Veridian Engineering

P10 Workinopdl | Pamugid W%
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Tools of Pilot-in-the-Loop Evaluations

Ground Based Simulators

» Considerations:
—Readily available at design site
—Serves key role in developmental evolution of dynamic elements
—Limitations:
Fidelity of synthetic visual and motion cues
worst in conditions where many current FCS problems erupt

> control strategy (can be quite different from

Task environment
flight)

Lack of real flight stress

\Lr A\

Veridian Engineering

Fligh Reseach Graup

" P10 Workshop™ L Pt agi1989

Tools of Pilot-in-the-Loop Evaluations (Cont.)

- History indicates that for demanding high-
gain tasks, ground based simulation has
often been misleading - failed to expose
dangerous problems

s ™

Flight Research Group Veridian Engineering

» 10 WorkshopM L Panegid 19



Tools of Pilot-in-the-Loop Evaluations (Cont.)

= In-Flight Simulators (IFS)

—Visual and motion cue environment correct/real, not
synthetic

—Real flight stress
—Real piloting tasks

\J % [\

Veridian Enginesring

Flight Research Group
1999

= PO Workshoo ML Pur st

Tools of Pilot-in-the Loop Evaluations (Cont.)

« In-Flight Simulator (Cont.)

- Limitations
- If IFS Not 6 DOF —> some cues may not be fully representative

- A gumber of scenarios outside capabilities of currently operational
IFS's.

e.g. in high o etc.

- Only as good as model

- However, for a given "model” —»gives most credible handling quality
answers

— Generally much more credible effects of turbulence than in ground sim

\[ 4/ i

Flight Research Grolp Veridian Engineering

[ P Workahop M L Parapid /18798
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Objectives of IFS

« Verify/check ground sim results in real flight environment

= “Calibrate” ground simulator

—Test pilots become tuned how to better use it for credible results given its
particular cueing limitations.

» Historically has brought small dedicated problem-solving oriented flight
test team together

—Fostered communication

Pilots <—> Engineers <—> Managers

\J 3+ i

Flight Reseach Group Veridian Enginearing
21 PIO Wokshop ML Par agd 1959

Tools of Pilot-in-the-Loop Evaluations (Cont.)

Prototype Vehicle
- Very Costly Tool
economically and from schedule viewpoint

. High risk environment in which to test potentially
questionable or unknown characteristics

~ High Cost and Risk Tool in which to test modifications/fixes

Operational Vehicle

. Once a vehicle is operational problem, fixing is a major
fiasco '
'} Ay

Flight Research Group Veridian Enginsering
2 PIO Woksnop™ L Pargd 1990
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Test Pilot Evaluation Tools

= Flight Test Tasks/Techniques

a Communication Tools

‘LD A\

Veridisn Engineering

Filght Research Group
n PO Workshop/i | Pow agit 1949

Flight Test Tasks

g
“Real” Tasks

» Using no special displays

= Single element or combination of elements from an operational
scenario

- pitch or roll attitude captures
. 45° bank level (const. altitude) turns with aggressive reversal
- Close formation flight
- Air to Air Tracking
-Probe and Drogue refueling task
Offset landing approaches

aggressive alternate tracking of runway edge @ 100 ft AGL (or
altitude safely appropriate for particular aircraft size)

L AR

Veridian Engineering

Tight Research Group
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Flight Test Tasks (Cont.)

Synthetic Tasks

—Tracking task presented on a convenient pilot display such as:

HUD (Head Up Display)
MFD (Multi Function Display)
Attitude Director Bars

—or presented on a removable LCD display with tasks preprogrammed on a
P.C. computer (demonstrated in Learjet)

= Tasks must include single axis and combined axes elements with
sufficient frequency and amplitude content on the tracking bar to test for
PIO susceptibility with both single axis and coupled inputs

—Need to brief pilot to aggressively work to keep errors zero
—high gain = aggressive closed loop behavior —— works on high frequency
portion of pilot - vehicle transfer characteristics ’
—High freq= quick or sharp initial response
\J R AW

Flight Research Group Veridian Engineering
kel PAO Wokshop U L Par agA 1989

Flight Test Tasks (Cont.)

Synthetic T@s_ks (Cont.)

-this is region where problematic (cliffy) phase lags, phase rates and rate
saturation effects occur
—Tasks should be programmed to occasionally require inputs from pilot that
may seem operationally unrealistic
e.g. rapid, full throw inputs

= Primary objective of tasks is to expose PlO/dangerous overcontrol
potential o

- minimize risks of occurrence once aircraft is “certified”

« Hence, need to force test input sequences that stress the pilot-vehicle
system to extremes even if unrealistic from an ops standpoint e.g.
“klunk” inputs used by Saab S

—Flight test needs to establish margins around the operational envelope
‘oL A\

Flight Research Group Veridian Engineering

k) PO Wokahop X L Parmagidd 19
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Flight Test Tasks (Cont.)

Synthetic Tasks (Cont.)

= Tracking bar programmable in both pitch and roll which the pilot chases
with body axis fixed symbol such as a waterline pitch marker

—This implementation has been successfully utilized on military aircraft by
projecting this task on a HUD
—demonstrated in Learjet projected on a head down LCD display

—In either head up or head down implementation, can record tracking error in
both pitch and roll and correlate with pilot input activity

AT RS A

Veridian Engineering

Flight Resewch Graup
DY Workshop ML Pant s 3585

Flight Test Tasks (Cont.)

Synthetic Tasks (Cont.)

command bar

airspeed
250

11500 <«— altitude
/q\‘/\waterline marker to be
matched with command bar

Learjet LCD Display of Tracking Tasks

VLT %

Flight Research Group Veridian Engineering

E) PO Wokshop ML Peey U109
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Flight Test Tasks (Cont.)

Synthetic Tasks (Cont.)

= Two types of tasks

1. Discrete Tracking Task (DTT)
—combination of steps, ramps in both pitch and roll but “coordinated”

—can separately control amplitude of pitch and roll separately to match
task to nature of aircraft being tested
—objective is to elicit both gross acquisition and fine tracking activity

2. Sum of Sines -
—combination of sine waves of different frequencies

—1st or 2nd order frequency roll off (filter)
—pitch and roll amplitudes separately controliable again to match task

to aircraft being tested
—objective is to elicit aggressive fine tracking activity

\J A\

Veridian Engineering

Flight Reseach Group
| &3 O Wokson ML Puvagal YoRd

Flight Test Tasks (Cont.)

Discrete Tracking Task

T3 A

Veridian Engineering

Flight Research Group

12 P10 Workahop™ L Parrep/d/ 1798
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Flight Test Tasks (Cont.)

F:lldl Command (deg)
>

Sum of Sines Tracking Task
{similar in roli}

\LE !

Veridian Enginesring

Flight Research Graup
» D Workshoptd i Por sgh 188Y

Flight Test Tasks (Cont.)

Other Considerations

= “Triggers” of P1O should be inherent in developed tasks whenever
feasible

= Need to consider task environment issues
effects of turbulence
- conditions of visual cues

« FTT’s must be tested against known problem configurations and
consistently expose potential or latent “black holes’

» FTT's must generally indicate “good” aircraft to indeed be good

\/ 8 AR

Veridian Enginsering

Flight Research Group
kil IO Workyheopd L Paragd T
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Special Issues Pertaining to Civil Certification

» A major hurdle is to get past barrier from pilots or managers on
test techniques that “transports are not flown this way” or that

certain pilot inputs are unrealistic.

_there needs to be recognition that flight test/certification test should
establish adequate “margins”

—ensure no “cliffs” on the edge of envelope

—account for unusual inputs from “startie” factor

\J 4 A
Veridian Enginsering

Flight Ressarch Group
O WorkshopM L Parr agik 11999

Test Pilot Communication Tools

- Need proper tools to ensure orderly process for test pilots to solidify and
effectively communication their evaluation or assessment to engineers,

managers, and other pilots

« Comment Cards
_ checklist for comments

- comments are meat of evaluation data

- Cooper-Harper Rating Scale
- consideration of "average rpiilot“

- cutoff for “exceptional attenﬁgn, skull or strength” in civil certification?

Iy o

Flight Research Group Veridian Enginsering
PIO WorkvhopM L Paray/d/ 1999
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Test Pilot Communication Tools (Cont.)

= P10 Rating Scale
—current scale

—suggested modification

—too much arguing about PIO rating scale when most important
pilot evaluation issue is task/FTT's that expose problems - rest
is merely organizing how pilot reports what he has seen

\I'§/ A
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Veridian Engineering

Unique Instrumentation Regruirements for PIO
: Related Flight Tests

rg——g———————r—ﬁ

- During Flight Test
- Data sampling rates 30 hz or higher for rigid body PVS dynamics

i.e. fast variables
- Lower data rates for slow variables such as altitude airspeed

- should get derivative of aircraft rotational rates and perhaps even 2nd
derivative - - - “jerk” motions

—-instrument forn, , n
' Yp

- should instrument for actuator rates and control margins

\J 1 A\

Flight Ressarch Group Veridian Enginsering
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Unique Instrumentation Requirements for PIO

» In Operational Use
—Flight Data Recorder
—Sufficient data channels to record critical variable

—Sampling rates for critical parameters need to be at least 15-20 hz

\/ %+ A

Fiight Reseach Graup Veridian Engineering
o

] PO WorkshopM L_Par agar 1S

Management Issues
Pertaining to PIO Problem

Vv N

Flight Ressarch Groop Veridian Engineering
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Management Issues

» Industry awareness of PIO is poor

» Lack of understanding of phenomenon and implications to
design process
flight test process
» Flight test teams need specialized training to improve ability to test FBW
in general and for PIO in particular

—exposure of test pilots and FTE's to a variety of PIO's in in-flight simulator
aircraft is excellent conditioner for test teams

“A good scare is worth more than good advise”

-makes them “true believers” in PIO search process

\J 4 1S\

Flight Research Graup Varidian Ergineering
IO Workshas UL Pae agR YRR

Management Issues (Cont.)

» Managers need to support a structured approach to test process from
early in design to service entry

use all the tools at their disposal, integrated recognizing each tool
strengths and fimitations

= Managers need to treat flight test as a process of discovery rather
than as mundane validation of predictions

« What information from flight test needs to be communicated to the
operational pilot

- overcome the “marketing hurdle”

\/8 AR\

Fhight Research Group Veridian Engineering
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Flight Test Training

=« Exposure of test pilots and flight test engineers to real PIO’s in the
variety of tasks presented earlier becomes an invaluable career

experience to:

— Appreciate the significance of the phenomenon

— Appreciate the criticality of various tasks and of task environment towards
the propensity to PIO
_ Ensure that these flight test crews will appropriately adjudicate any test

planning process with regards to PIO in which they will participate in the
course of their career

\L L A"

Veridian Engineering

Flight Research Group
@ 10 Workshopl 1 Pae agd 1899

Flight Test Training (Cont.)
g

to reiterate

“A good scare is worth more than good advice”

VY iy

Veridisn Engineering

Flight Research Group
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A Method for the Flight Test
Evaluation of PIO Susceptibility

Thomas R. Twisdale & Michael K. Nelson
412thTW/TSFT/USAF Test Pilot School
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Handling qualities testing is the most important of
all flying qualities testing

Handling qualities are the dynamics, or
characteristics, of the pilot plus the airplane.

Handling qualities testing is based on three
principles

model validation test method
build-up approach

completeness
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Model validation test method

1. Predict the airplane response, based on a
model.

2. Test the prediction.

3. Validate or correct the model, based on the
test results.

Build-up approach

Testing progresses from the lowest to the
highest level of risk.

Completeness

Evaluate the FULL spectrum of handling
qualities. |
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Three phases of handling qualities testing
Phase 1: Low bandwidth testing
Phase 2: High bandwidth testing

Phase 3: Operational testing
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Phase 1: Low bandwidth testing

Purpose: ,
evaluate low bandwidth hq (smooth, low

frequency, non-aggressive control)
familiarization
warm-up
"get acquainted”

Test Maneuvers
open-loop (NOT handling qualities)

semi-closed-loop
low bandwidth maneuvering

low bandwidth tracking

Test data
pilot comments
time histories
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Phase 2: High bandwidth testing

Purpose
evaluate high bandwidth hq (abrupt, high

frequency, aggressive, small and large
amplitude control) |
"stress testing'
"safety gate"

Test maneuvers
HQDT (principally)
simulated carrier approaches

Test data: pilot comments and ratings (PIO
and analog scale)



Phase 3: Operational evaluation

Purpose: evaluate whether handling qualities
are adequate to perform the design mission

Test maneuvers: depends on airplane and
mission

Task performance standards: traceable to
mission

Test data
pilot comments and ratings (Cooper-
Harper, PIO, analog scale)
measured task performance
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Phase 2: High bandwidth testing

Purpose
evaluate high bandwidth hq (abrupt, high

frequency, aggressive, small and large
amplitude control)

"stress testing"

"safety gate"

Test maneuvers
HQDT (principally)

simulated carrier approaches

Test data: pilot comments and ratings (P10
and analog scale)
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HQDT
special piloting technique:

track a precision aim point as aggressively
and as assiduously as possible, always
striving to correct even the smallest of
tracking errors



Objections to HQDT
pilots don’t fly that way
OK for fighters, but not for large airplanes
causes degraded task performance
HQDT makes any airplane look bad

done for engineers, not pilots
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ON-BOARD PIO D

DETECTION/PREVENTION ’&?&‘

David B. Leggett Phone: (937) 255-8498
AFRL/VAAD FAX: (937) 656400
Wright-Patterson AFB; Of 4883 EMail Javidcggett@va. wpatb.af.mil

BACKGROUND

« THE BEST WAY TO AVOID PIO PROBLEMS IS TO
DESIGN THE FLIGHT CONTROL SYSTEM SO
THAT THE AIRCRAFT DOES NOT HAVE ANY PIO
TENDENCIES

+ But...
- Aerodyamic prediction methods (CFD, wind tunnel) are not
perfect
— Design criteria and analysis methods are not perfect, particularly
with regard to the effects of significant nonlinearites

— Flight control changes to fix PIO problems detected late in the
development cycle can be “expensive” to fix




THEORETICAL &S}

NS

BENEFITS

 Quick, cheap fix

- Valuable safety net in flight test, even if
not intended for operational use

« Detection algorithms can provide
valuable data during development and
flight test

|
» May only mitigate PIO tendency, not solve
it

« Always impacts general handling qualities
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3 Q@‘} ;9 VARIOUS APPROACHES

Suppression filters
Rate limiting algorithms
PIO detectors

PIO preventers
— Passive
— Active

Force cueing

« Low-pass filter in the forward path to
prevent pilot inputs from exciting PIO
tendency

« Attenuates command and adds phase lag to
the aircraft response, degrading general
handling qualities, especially for high
bandwidth tasks
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- " Frequency-dependent attenuation

Output from sine wave input,
A =10 deg, ® = 2.5 rad/sec

» Eliminates or reduces the phase lag due to
rate limiting’

+ Introduces a bias between commanded
output and actual output, attenuates
command and reduces control power

« Removing bias causes “uncommanded
motions”

« Only good for PIO tendencies caused by
rate limiting
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B ] Basic Concept

“Uncommanded”
Response Generated
by Bias Removal

e — Bias generated »
© ‘; : : : by asymmetric "
input

RATE LIMITING EXPERIMENT ON

LEARJET (Mar 93)

Pilot | Task | RLC | CHR | PIOR | Comments
A BAT | Off 8 4 nonlinear, lumpy, seems like a delay but not time delay

On 5 3 undesireable motions

PA off | 10 5 abrupt maneuvers get divergent behavior, large but slow
amplitude divergence, no evidence during approach

On 4 2-3 | some lack of precision, 5 deg overshoots, sense that I'm
in centrol, no tendency to get into divergence, precision
not quite what I'd like, small wallowing, tendency to
overcontrol, task compromised slightly

B 1 PA | Off | 10 ; 5 |PIO prone, abrupt inputs do cause oscillations which may
be divergent

On | 4.5 | 2,2 | no difficulties with PIO, small tendency to be imprecise,
fitthe more tendency to wallow when you try to be
precise, trying to be more precise brought out tendency
to overcontrol

Cc PA Ooff | 10 6 no way to stay in the loop on that, holy s—t!, PIO max
on the scale, stick all the way over and aircraft still going
the other way

On - - still goesnsrlow,rcould definitely feel rate limiting but it
was not PIO prone like the last one, big difference
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« Warning activated by detection of PIO, rate
limiting, or other related phenomena

« Warning can be:
- Light
— Audio warning
— Warning on HUD
— Force feedback through stick
« Pilot must recognize and adapt

ACTIVE PIO SUPPRESSION

« Changes to control system activated by
detection of PIO, rate limiting, or other
related phenomena

— Reduce forward path gain
— Pass pilot input through low-pass filter
— Force feedback through control stick

» May have more adverse effects than the P10
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P10 DETECTION AND

ACTIVE SUPPRESSION &%

Pitch Angle

1 2 3 4
Netwp_rk Indication of PIO

1
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, Pilot Gain Multiplier
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% i 3 3 3 3 :
% Pilot Input
§ 0 AN ,/— Y - Ny R
g p E r T
Time in Seconds

CONCLUSIONS 5,

» These techniques can work

« Although not the first choice, they may
present a program with an alternative to
“complete redesign” or “tell pilot not to
do that”

« Detection algorithms provide handy
data analysis capability

« There are serious drawbacks, design of
these algorithms should not be taken
lightly
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Accurafe Automation Corporation

Real Time PIO Detection and
Compensation

Chadwick Cox, Carl Lewis,
Robert Pap, Brian Hall
Accurate Automation Corporation
7001 Shallowford Road
Chattanooga, TN 37421
ccox@accurate-automation.com
423-894-4646

Accurate Automation Corporafon &‘)
Accurate Automation Corporation
Thanks

« Charles Suchomel - AFRL, COTR
« Brian Stadler - AFRL
« David Legget - AFRL
« Thomas Cord - AFRL
« Ba Nguyen - AFRL

Accurate Automation Corporafon w
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Accurale Automation Corporation

Neural Network Compensation Strategy for

Preventing Pilot-Induced Oscillations
Air Force Phase |l SBIR F33615-96-C-3608
COTR: Chuck Suchomel AFRL/VACD
Objective: Develop a Smart Neural Network-Based Controller to Prevent
Pilot-Induced Oscillations.

1. Recognize Pilot-Induced Oscillations ~
In Data From Events Where PIO
Have Played a Major Part

2. Designed a Neural Network To
Recognize the P10 and Help The
Pilot to Fly Out of the Problem

3. Designed an Advanced Hardware
Controller to Validate the Concept

4. Patent Pending

Accurate Automation Corporafon

Accurate Automation Corporation

Results to Date

Patent will be issued soon

Detector/Compensator tested in closed loop with
simulated configurations on AFRL 6-DOF piloted
simulator

Detector tested with F-16 PIO data, HARV PIO data,
and simulated NT-33 data (MS-1)

Detector/Compensator tested in open and closed
loop with simulated F-16

S)

{‘
O

Accurate Automation Corporafon
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Accurate Automation Corporation

Results to Date

Designed hardware
VME
DSP
NNP® interface
VME to 1553 interface
A/D, D/A, digital interfaces

AN
Accurate Automation Corporafon @
Accurate Autornation Corporation
Presentation Topics
« P10 Detection and Compensation
« Simulation Testing
« PIO Hardware
s
Accurate Automation Corporafon w
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Accurate Automation Corporation

Concept

- While a PIO occurs, a detector flags
the PIO.

. If no PIO is occurring, the detector
outputs a zero.

« When the detector flags a PIO, a
compensator is engaged.

>

Accurate Automation Corporafon &"I‘:\‘/
Accurate Automation Corporation
P10 Detector Goals
» Real time operation
« Accurate
» Robust
- configurations
— pilots
— hoise
« Simple
Accurate Automation Corporafon @

282




Accurate Automation Corporation

PIO Compensator Goals

Activated when PIO occur

Never active when PIO not occurring
Stops PIO

Acceptable to Pilots

Accurate Automation Corporafon

Accurate Automation Corparaforn (D “‘
Accurate Automation Corporation
PIO Detection
« PIO detection is simple and clean
—simple algorithm
—runs in real time
—only straightforward preprocessing is
required
—works in longitudinal and lateral axes
— works for many configurations
— accurate
D)
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Accurate Automation Corporation

P10 Compensation

- How to compensate for PIO is still
unresolved.
—We. have tested simple authority
reduction and a PIO filter
— Pilot’s do not like to have their authority
reduced

— Sometimes different situations call for
different types of compensation

— More testing is necessary.

b
2>

— Accurate Aulomation Corporafon @:‘,‘J
Accurate Automation Corporation )
Algorithm Development
« We used MS-1 simulation data, HARV
data, and F-16 simulation data to
develop the detector.
« An iterative process was used to train
the detector.
« The compensator was developed with
simulated HAVE PIO configurations.
AN
= Accurate Automation Corparafon @
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Accurate Automation Corporalion
Simulation Testing

. Tested detector with MS-1 PIO data

- Tested detector/compensator with
simulated HAVE PIO configurations
and simple pilot model

. Tested detector, advisory, and
compensator in LAMARS simulator

Accurate Automation Corporafon
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Detection of MS-1 Simulated P1IO
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Accurate Automation Corporation

Piloted Simulation Testing

« Performed in AFRL LAMARS high-
fidelity motion base simulator

.« Tested a PIO detector and two
compensators

. Gathered data to improve detection
and compensation methods

Accurate Automation Corporafon

Accurate Automation Corporation

Piloted Simulation Testing Rational

- Only human in the loop testing can
tell you how a compensator or
advisory will effect the performance
of a pilot.

« Pilot models are not adequate.
—They are good only for initial testing.

— Not all problems can be uncovered with
pilot models.

Accurate Automation Corporafon
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Accurate Automation Corporation

Major Questions

« Does the detector perform
adequately?
— Must not trigger when it shouldn’t

« Does the compensator perform
adequately?
— Must not cause a bigger problem when
itis on.

— Preferably must allow the pilot to
perform his task.

)

&

Accurate Automation Corporafon "‘““
Accurate Automation Corporation
Detection Issues
« Does the detector perform
adequately?
— Does is stay off when there is no PIO?
—Does it come on when there is a PIO?
— Does it work across a wide range of
configurations?
— Does it work across a wide range of
pilots?
—Is it robust to noise?
Accurate Automation Corporafort w




Accurate Automation Corporalion

Compensation Issues

- Does the compensator perform
adequately?

— Does it stop PIO?

— Can the task still be performed?

— Do pilots mind having their authority
reduced?

— Does filter induced delay cause other
problems?

Accurate Automation Corporafon

Accurate Automation Corporation

Compensation Issues

« Do different PIO call for different

compensation?

—Use gain compensation with explosive
P1O?

_Use filter compensation with mild to
medium PI1O?

— Use other methods?

Accurate Automation Corporafon
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Accurate Automation Corporation

Compensator Types

» Gain Compensator
— Ramp in
— Ramp out
— Minimum authority

« Filter Compensator
— Ramp in
— Ramp out
— Minimum authority

Accurate Automation Corporaton

23
(AW
IA.A

(OO

Accurate Automation Corporation

Simulation Testing Methodology

Succinct matrix
— HAVE PIO and landing task

—~HAVE LIMTS like configurations with

tracking task

Random presentation
Repeats allowed

—this allowed us to use short

without confidence levels

Accurate Automation Corporafon

Short look instead of long look

look
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Accurate Automation Corporation

Simulation Testing Matrix
Advisory/Compensation Options

« Four Cases

— PIO detection but no advisory, no
compensation

— Detection and advisory, no
compensation

— Detection and no advisory,
compensation

— Detection and advisory, compensation

Accurate Automation Corporatorn

Accurate Automation Corporation

Simulation Testing Methodology -
Pilots

- one Navy test pilot, one civilian
acrobatic pilot, and five Air Force
test pilots

prebriefed pilots

did not lead the pilots

tried not to let pilots compare
configurations

performance feedback provided at
end of run

= Accurate Automation Corporafon
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Accurate Automation Corparation

Simulation Testing Methodology -
Pilots

- made pilots go through the
scales when giving ratings

- rating/Questionnaire  cards
with pilot in cockpit

« debriefed the pilots

- frequent breaks

Accurate Automation Corporafon @

Accurate Automation Corporation

Simulation Testing -
Pilot Subjective Data

« Pilot briefings
— configurations, tasks, motion, ratings,
adequate and desired
 Pilot comment card

—PIO scale (Mike Parrag - Veridian) and
Cooper-Harper scale

— Questions
. Pilot’'s asked to give frank
assessment of algorithms

Accurate Automation Cb;boréion !’A‘.‘/
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Accurate Automation Corporation

Simulation Testing - Configurations

- HAVE PIO - Category |
— Baseline Longitudinal 2-1,3-1,5-1
— Primary Longitudinal 2-5, 5-9, 5-10
- Secondary Longitudinal 2-8, 3-12, 3-13

« HAVE LIMITS - Category Il
— 2P, 2DU, 2D, 2DV
— Rate limit adapted to pilot to force PIO

)

&
>

Accurate Automation Corporafon "‘ “‘
Accurate Automation Corporation
Simulation Testing - Pilots’ Tasks
- Offset landing
— pilot must land aircraft within target zone
starting from an offset approach
— HAVE PIO configurations
- Discrete tracking
— pilot tracks steps and ramps
— HAVE LIMITS
OGN

Accurate Automation Corporafon
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Accurate Automation Corporation

Simulation Testing - Time Series Data

- All detector and compensator inputs,
internal variables, and outputs

. aircraft state variables
- pilot outputs
- task and performance data

- pilot P10 indicators (trigger pulls at
about where a PIO occurs)

Accurate Automation Corporafon  ___
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Accurate Automation Corporation

Simulation Testing Results

- Detector works very well in pitch and
roll

« Gain compensator stops PIO but
pilots don’t like it

« Filter compensator had problems

« Much analysis still to be done

Accurate Automation Corporafon
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Report number 20 is missing slides 31 to 34; they were unavailable at the time of publication.

Accurate Automation Corporation

Simulation Testing Resulit -
Divergent PIO

Accurate Automation Corporalon w
Accurate Automation Corporation
Simulation Testing Result -
NO PIO
N
——————=— " Accurale Automation Corporafon @_
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Accurate Automation Corporalion

Simulation Testing Resuit -
NO PIO

47‘
AA‘
Accurate Automation Corporakon LA
Accurate Automation Corporation
Simulation Testing Result -
NO PIO
(L)

Accurate Automation Corporafon
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Accurate Automation Corporalion

Simulation Testing Resuits -
Pilot Comments

- Advisory well correlated to pilot
assessment of PIO

- Some pilots found advisory
helpful

- Some pilots said advisory didn’t
give them additional information

- Some pilots commented on
timeliness of detection

Accurate Aulomaltion Corporafon
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Accurale Automation Corporation

Simulation Testing Results -
Pilot Comments

. Pilots said gain compensation
stopped PIO, but interfered with
task

* Delay induced by filter
compensator caused problems

. Pilots felt that motion helped
them with tasks, especially
landing

Accurate Automation Corporafon

>)

&
%

296




Accurate Automation Corporation
Simulation Testing Results -
Observations

* Pilots improved their
performance over time

. One “golden arm” pilot could fly
almost anything

« Pilots sometime adapted to gain
reduction

AN
Accurate Automation Corporafon "‘ “
Accurate Automation Corporation
PIO Compensation Hardware
« board hosts PIO detection and
compensation algorithms
« DSP
« includes interface to multiple AAC
NNPs. -
« VME bus with 1553 interface
- A/D, D/A, and digital interfaces
.ﬁ,‘:
Accurate Automation Corporafon @
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Conclusions
- Developed a real-time PIO
detector
Developed a real-time PIO
compensator

Tested detector and
compensator in a high fidelity
piloted simulators

Continuing simulation testing
Developing hardware

Accurate Automation Corporaton

Accurate Automation Corporalion

Next Steps

Analyze data

More simulation testing

— larger matrix, operational pilots, hew
advisories, force feedback

Flight Testing
Develop PIO Classifier

Develop a good compensation
method

Accurate Automation Corporafon
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P10 Detection with a Real-time
Oscillation Verifier (ROVER)

David G. Mitchell
Technical Director
Hoh Aeronautics, Inc.

Pilot Induced Oscillation Research Workshop
NASA Dryden Flight Research Center
8 April 1999

Al

Prevention of PIOs in Flight

« Fundamental goal is to prevent PIOs by design
— On-board detector could be a valuable flight test tool
— Application for failures, unusual loadings and flight conditions
« Monitor airplane responses and pilot inputs to look for:
- Oscillations of proper frequency range
- Airplane out of phase with pilot
— Amplitudes of input and output large
» Concept developed under current contract
- Has not actually been applied real-time
- Applying for patent
— Looking for follow-on funding for further development
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Real-Time Detection of PIOs

« Time histories of dozens of PIOs have been examined
in detail
« Underlying conclusions:
— There is no clearly identifiable “pre-P10” condition
— Many of the precursors to PIO occur in normal operation
— 1t will not be possible to detect and stop a PIO before it starts
— The best we will be able to do is detect one in the first half-
cycle (or so)

Al

Real-time Oscillation VERIfier
(ROVER)

» Assumptions:
- Pilot operates more or less sinusoidally
~ Pilot adopts synchronous behavior in P10
— Airplane is 180" out of phase with pilot in a PIO
« Apply a moderate amount of filtering
- Bandpass to emphasize range of expected PIO frequencies
— Both input and output filtered to minimize impact
» Test for:
— Oscillation frequency within range for PIO
- 90" phase lag between control input and pitch rate
— Proper amplitude of input and output

WA=
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Output for YF-22A Mishap
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Application as a Flight Test Tool:
Time-domain verifier for frequency sweeps
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Application as a Flight Test Tool:

Time-domain verifier for frequency sweeps
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Continuing Development

Extend to roll
Extend to normal acceleration
Select best filters for bandpass, removing noisy data
Requires tailoring
- — Different flight conditions (higher thresholds up-and-away)
— Different cockpit effectors (force vs. displacement)
— Adapt to failures (reduce thresholds if sensors lost)
Active intervention vs. alerting
— Should depend upon complexity of flight control system,

degree of instability, mission roles
— Form of active intervention will depend upon fiight condition

A=

303







Pilot Opinion Ratings and PIO

Thomas R. Twisdale & Michael K. Nelson
412thTW/TSFT/USAF Test Pilot School

See Paper no. 4 in Appendix 3
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THE NEED FOR PIO
DEMONSTRATION MANEUVERS

Vineet Sahasrabudhe
David H. Klyde
Systems Technology, Inc.

David G. Mitchell
Hoh Acronautics, Inc.

Pilot-Induced Oscillation Rescarch:
The Status at the End of the Century
NASA Dryden Flight Rescarch Center
6-8 April 1999

OVERVIEW

o Ildentify relevance of demonstration maneuvers for PIO

e Review USAF Handling Qualities Demonstration '
Maneuvers program

¢ Exposing PIO
- Probe-and-drogue refueling example
- HUD tracking example -
e The need for PIO specific maneuvers

e Additional candidate PIO demonstration maneuvers

6-8 April 1999 PIO Research Status Workshop
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RELEVANCE TO PI1O

e Objective of the USAF program was to develop a catalog
of repeatable maneuvers to evaluate closed-loop handling
qualities

o Some of the maneuvers included in the final catalog also
exposed P10 and/or PIO tendencies

o The continued occurrence of PIO in operational aircraft
(military and commercial) indicates a strong need to
develop a similar catalog for PIO

6-8 April 1999 P10 Research Status Workshop

DEMONSTRATION MANEUVERS
PROGRAM BACKGROUND

o Phase IT SBIR for the USAF Flight Dynamics Directorate

- Air Force Technical Contact: Thomas J. Cord

o Phase I results published as STI TR-1298-1 and as Appendix C of WL-
TR-94-3162

e Proposed Maneuver Catalog published as STI ITR-1310-1
- Distributed to USAF FIGC mailing list for review

e STEMS Flight Test Evaluation with the NASA F/A-18 HARV
published as STI ITR-1310-2 and as WL-TR-97-3002

e Phase II Results published as WL-TR-97-3099 & WL-TR-97-3100
- Volume I: Maneuver Development Process (-3099)

- Volume II: Maneuver Catalog (-3100)

6-8 April 1999 PIO Research Status Workshop %
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MISSION-ORIENTED
REQUIREMENTS

e Requirements are based on Mission Task Elements
(MTEj) that relate to actual operations

e References to aircraft size are removed
o Allow for multiple response-types
e Provide predicted handling qualities

e Demonstration maneuvers are designed to
complement the mission-oriented approach

6-8 April 1999 PIO Research Status Workshop

HANDLING QUALITIES
DEMONSTRATION MANEUVERS

o Evaluate all aircraft types (military and civil) and
mission tasks

e Provide consistent maneuver definitions including
desired/adequate performance requirements

o Evaluate total system: flight controls, pilot-vehicle
interface, advanced displays and vision aids, etc.

e Provide ultimate check of handling qualities
through piloted evaluation

6-8 April 1998 PIO Research Status Workshop
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MANEUVER CATEGORIES

e Non-Precision, Non-Aggressive

Takeoff, Landing, Waveoff/Go- Around
Heading and Alitude Changes

¢ Non-Precision, Aggressive

Air-to-Air Gross Acquisition

e Precision, Non-Aggressive

Precision Offset Landing

Attitude Capturc and Held

e Precision, Aggressive

Air-to-Air Finc Tracking

6-8 April 1999 PIO Research Status Workshop

MANEUVER EVALUATIONS

e Flight Test Evaluations

NASA Dryden F/A-18 HARV: STEMS
USAF TPS HAVE GAS 1I: Probe-and-Drogue Refueling
USAF TPS HAVE LIMITS: HUD Tracking

General aviation aircraft: numerous maneuvers

o Flight Test Reviews

Large aircraft flying qualities (TIFS): Precision Offset Landing
USAF TPS HAVE CAP: Precision Offset Landing
USAF TPS HAVE TRACK: Simulated Aerial Refueling

« Pilot-in-the-Loop Simulation

NASA Dryden SR-71 Simulator: Supersonic Mancuver Set

McDonnell Douglas: PIO maneuver development

6-8 April 1999 PIO Research Status Workshop
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MANEUVER CATALOG

o Final catalog contains 36 maneuvers
- Flight test evaluations: 18 Maneuvers
- Simulator evaluations: 16 Maneuvers
- 5 maneuvers need refinement

o Catalog spans the range of piloted control

e Flight conditions range from post-stall to supersonic, and
from takeoff to landing

e Catalog is a living document

- Revisions and additions arc expected as new research is conducted

6-8 April 1999 PIO Research Status Workshop

EXPOSING PI1O

e Demonstration Maneuvers that have produced flight test
PIOs

- Aerial refueling, particularly probe-and-drogue
- HUD tracking
- Precision offset landing

e Demonstration Maneuvers that have exposed P10
tendencies

- Air-to air and air-to-ground fine tracking
- Attitude captures

- Gross acquisitions (often expose Category II tendencies)

6-8 April 1999 PIO Research Status Workshop
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RECENT EVOLUTION OF
PROBE-AND-DROGUE REFUELING

e USN F-14 Dual Hydraulic Failure Study (1991)

- Revealed potential explosive nature of probe-and-drogue refueling task for severcly
rate limited configurations

- Formation flying (prior to hook-up) did not exposc poor handling qualitics

- Tracking drill devised to “shake out” configurations prior to hook-up
s USAF TPS HAVE GAS (1993)

- Evaluation of different response-types using probe-and-drogue hook-up task

- Handling qualitics performancc requircments (bascd on number of attempts to
achieve three successful hook-ups) were not sufficiently discriminating

e Notice of Change to MIL-STD-1797A (1995)

- HAVE GAS task with additional requircment to avoid contact with basket webbing
for desired performance

» USAF TPS HAVE GAS 11 (1997)

6-8 April 1999 PIO Research Status Workshop

| HAVE GAS 11
PROGRAM SUMMARY

o USAF TPS Class 96B Test Management Project conducted in spring
1997

e Objective: Identify the task that best reveals aircraft closed-loop probe-
and-drogue refueling handling qualities

o Seven flight test sorties: NASA F/A-18 (4 Sorties) and USAF variable
stability NT-33A, operated by Calspan, (3 sorties)

e Candidate evaluation tasks: Hook-Up, Tracking, and Aiming Tasks

e Both qualitative and quantitative results clearly indicated that the
tracking task best exposed closed-loop handling qualities

e To capture potential problems close-in to the basket, the hook-up task
should be performed in concert with the tracking task

6-8 April 1999 PIO Research Status Workshop
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DROGUE TRACKING
CONFIGURATION

Side View

DROGUE TRACKING TASK
FOR PIO
HAVE GAS II
Video Example

313




PROBE-AND-DROGUE TASK
FOR PIO: CONCLUSIONS

o Probe-and-drogue refueling has exposed all three PIO
Categories in flight test

o HAVE GAS II program defined repeatable evaluation tasks
based on drogue tracking and hook-ups

e Turbulence can have a significant impact on task
performance and should therefore be accounted for in the
evaluation process

e A method should be employed to verify drogue tracking
distance (chase plane, differential GPS, etc.)

6-8 April 1999 PIO Research Status Workshop

HUD TRACKING TASKS FOR PIO

e Recent Experience
- USAF TPS HAVE LIMITS

- McDonnell Douglas ground simulation comparison study

- STI development of pilot evaluation tool (PASS) using sum-of-
sines tracking tasks

- HAI PIO simulations on LAMARS using discrete ( “step-and-
ramp,” “Calspan” or “SAAB) tracking tasks

e Sum-of-Sines effective for identifying pilot dynamics and
PIO tendencies, especially Category I

e Discrete Tracking effective for identifying P10 tendencies,
especially Category II

6-8 April 1999 PIO Research Status Workshop

&

314

&l



HUD TRACKING TASKS FOR P1O

HAVE LIMITS
Video Example

6-8 April 1999 P1O Research Status Workshop t/_ﬁ

HUD TRACKING TASKS FOR PIO:
CONCLUSIONS

o There may be initial pilot reluctance to sum-of-sines task

o Discrete tracking is most effective as a two-axis task
- Reduces pilot “learning”
- Exposes both pitch and roll problems

o Verbal readouts not effective

Introduces undesired variability with commands

Must be single-axis only

Potential for pilot confusion over command values

No way to monitor tracking performance

Must be steps only, since “ramps” cannot be introduced verbally

6-8 Aprit 1999 PIO Research Status Workshop @
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DEMONSTRATION MANEUVERS
FOR PIO

e Need for dedicated PIO Demonstration Maneuvers
- PIO is not an operational event
- PIO testing should be distinct from handling qualities

- Some testing will be inconsistent with operational testing (€.g.,
HUD tracking or close formation witha transport)

e Additional candidate P10 Demonstration Maneuvers
- SAAB Klonk method
- HQDT

Rapid attitude captures

Others?

6-8 April 1999 PIO Research Status Workshop
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